Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \Sigma_{j} U^{i j} a^{i} a^{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Er	1/2	0.521683 (15)	3/4	0.01841 (6)
Ol	0.56702 (9)	0.46522 (18)	0.9647 (2)	0.0359 (5)
O 2	0.46523 (9)	0.34097 (17)	0.8086 (2)	0.0303 (4)
O3	0.58625 (8)	0.42206 (19)	1.1975 (2)	0.0306 (4)
O4	0.53501 (9)	0.68217 (17)	0.9027 (2)	0.0294 (4)
N1	0.83637 (17)	0.2443 (5)	1.4600 (5)	0.0979 (17)
N2 \dagger	0.3868 (4)	-0.1176 (8)	0.9039 (11)	0.092 (3)
Cl	0.60188 (11)	0.4326 (2)	1.0835 (3)	0.0234 (5)
C2	0.66728 (12)	0.4057 (2)	1.0934 (3)	0.0279 (6)
C3	0.70490 (13)	0.3566 (3)	1.2181 (3)	0.0332 (7)
C4	0.76599 (14)	0.3358 (3)	1.2287 (4)	0.0459 (9)
C5	0.80512 (16)	0.2841 (4)	1.3580 (5)	0.0655 (13)
C6	0.78943 (16)	0.3633 (4)	1.1153 (5)	0.0583 (11)
C7	0.75127 (17)	0.4116 (4)	0.9902 (5)	$0.0610(13)$
C8	0.69056 (15)	0.4332 (4)	0.9791 (4)	0.0460 (8)
C9	1/2	0.2893 (3)	3/4	0.0279 (8)
Cl 10	1/2	0.1651 (4)	3/4	0.0315 (9)
CII	0.46048 (16)	0.1079 (3)	0.8081 (4)	$0.0397(7)$
C12	0.4600 (2)	-0.0074 (3)	0.8063 (5)	0.0499 (9)
Cl3 \dagger	0.4211 (4)	-0.0680 (7)	0.8592 (9)	0.0556 (19)
C14	1/2	-0.0653 (5)	3/4	0.0563 (14)

\dagger Site occupancy $=0.50$.

Table 2. Selected bond lengths (\AA)

$\mathrm{Er}-\mathrm{O} 1$	$2.2712(19)$	$\mathrm{O} 3-\mathrm{C} 1$	$1.253(3)$
$\mathrm{Er}-\mathrm{O}^{i}$	$2.2764(18)$	$\mathrm{N} 1-\mathrm{C} 5$	$1.131(5)$
$\mathrm{Er}-\mathrm{O} 4$	$2.412(2)$	$\mathrm{N} 2-\mathrm{C} 13$	$1.164(10)$
$\mathrm{Er}-\mathrm{O} 2$	$2.439(2)$	$\mathrm{Cl}-\mathrm{C} 2$	$1.503(3)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.243(3)$	$\mathrm{C} 9-\mathrm{Cl})$	$1.496(6)$
$\mathrm{O} 2-\mathrm{C} 9$	$1.265(3)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.359(9)$

Symmetry code: (i) $x, 1-y, z-\frac{1}{2}$.

Table 3. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 8 \cdots \mathrm{Nl}^{\mathrm{i}}$	$0.918(18)$	$2.09(3)$	$2.935(4)$	$153(3)$
$\mathrm{O} 4-\mathrm{H} 7 \cdots \mathrm{O}^{\mathrm{ij}}$	$0.901(18)$	$1.92(2)$	$2.782(3)$	$160(4)$
Symmetry codes: (i)	$\frac{3}{2}-x, \frac{1}{2}+y, \frac{5}{2}-z$ (ii) $1-x, 1-y, 2-z$.			

All H atoms were located by difference Fourier synthesis. The water H atoms were refined with a rigid model and the other H atoms were refined isotropically.

Data collection: CAD-4 ARGUS Software (Nonius, 1996). Cell refinement: CAD-4 ARGUS Software. Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: XPMA and ZORTEP (Zsolnai, 1998). Software used to prepare material for publication: SHELXL97.

Financial support was from the National Natural Science Foundation of China (Nos. 29771001 and 29831010), the National Key Project for Fundamental Research and the Founder Corporation Group Foundation of Peking University.

[^0]
References

Fair, C. K. (1990). MolEN. Version 4.0. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft. The Netherlands.
Ma, J. F., Jin, Z. S. \& Ni, J. Z. (1994). Chin. J. Struct. Chem. 13, 113-116.
Ma, J. F. \& Ni, J. Z. (1996). Prog. Chem. 8, 259-276.
Nonius (1996). CAD-4 ARGUS Software. Linux version. Nonius BV, Delft, The Netherlands.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sakagami, N., Homma, J., Konno, T. \& Okamoto, K. (1997). Acta Crust. C53, 1378-1381.
Sheldrick. G. M. (1990). Acta Crnst. A46, 467-473.
Sheldrick. G. M. (1997). SHELXL97. Program for the Refinement of Cristal Structures. University of Göttingen, Germany.
Xing. Y.. Jin, Z. S. \& Ni, J. Z. (1987). Acta Chim. Sin. 45, 1044-1047.
Zsolnai, L. (1998). XPMA and ZORTEP. Molecular Geometry and Graphics Programs. University of Heidelberg. Germany.

Acta Cryst. (1999). C55, 1422-1425

Bis(4,4'-disulfanediyldipyridinium) di- μ -chloro-bis[dichlorocuprate(II)] bis(tetrafluoroborate)
Alexander J. Blake, Neil R. Champness, Paul A.
Cooke and James E. B. Nicolson
School of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, England. E-mail: a.j.blake@nottingham.ac.uk

(Received 28 April 1999: accepted 14 May 1999)

Abstract

In the title compound, $\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)_{2}\left[\mathrm{Cu}_{2} \mathrm{Cl}_{6}\right]\left(\mathrm{BF}_{4}\right)_{2}$, the $\left[\mathrm{Cu}_{2} \mathrm{Cl}_{6}\right]^{2-}$ anions associate through weak $\mathrm{Cu} \cdots \mathrm{Cl}$ contacts to form polymeric $\left[\mathrm{CuCl}_{3}\right]_{n}^{n-}$ chains. Hydrogen bonding between the chloride anions of these chains and the pyridinium protons, and between the pyridinium protons and the BF_{4}^{-}anions, results in the formation of weakly associated ribbons.

Comment

The title compound, (I), isolated during our studies into the formation of extended structures by copper halide complexes and bridging bipyridyl ligands, exists as an air-stable red solid.

A diffraction study confirmed the stoichiometry of the compound (Fig. 1). Within the crystallographically centrosymmetric $\left[\mathrm{Cu}_{2} \mathrm{Cl}_{6}\right]^{2-}$ anion, each $\mathrm{Cu}^{\mathrm{II}}$ centre

occupies a distorted square-planar environment with two bridging and two terminal Cl^{-}ligands. A fifth Cl^{-}ligand from an adjacent $\left[\mathrm{Cu}_{2} \mathrm{Cl}_{6}\right]^{2-}$ anion provides a longer apical $\mathrm{Cu} \cdot \cdots \mathrm{Cl}$ interaction of 2.6643 (14) \AA, giving each $\mathrm{Cu}^{\text {II }}$ centre an overall distorted squarepyramidal coordination environment, and resulting in the formation of a polymeric $\left[\mathrm{CuCl}_{3}\right]_{n}^{n-}$ anionic chain. The arrangement of this polymeric chain is analogous to those observed in (piperazinium) $\left[\mathrm{Cu}_{2} \mathrm{Cl}_{6}\right]$ and (piperidinium $)_{2}\left[\mathrm{Cu}_{2} \mathrm{Cl}_{6}\right]$, although the inter-dimer $\mathrm{Cu} \cdots \mathrm{Cl}$ interactions [2.622 (3) and 2.612 (1) \AA, respectively] are slightly shorter in these two compounds (Battaglia et al., 1988). cis-CuCl ${ }_{2} \cdots \mathrm{HN}$ hydrogen-bonding interactions between the pyridinium proton (H 10 A) and both Cl 1 and Cl 3 of the anion, and an $\mathrm{F} \cdots \mathrm{NH}$ hydrogen bond between $\mathrm{H} 1 A$ and Fl of the BF_{4}^{-}anion, result in the formation of ribbons running along the crystallographic a direction, with each stack of weakly associated $\left[\mathrm{Cu}_{2} \mathrm{Cl}_{6}\right]^{2-}$ anions surrounded by successive columns of bipyridinium cations and BF_{4}^{-}anions (Fig. 2). The distances and angles in the cis- $\mathrm{CuCl}_{2} \cdots \mathrm{HN}$ hydrogen bond [N10-H10A‥Cl1 2.49, N10 \cdots Cll 3.237 (4) \AA and $\mathrm{N} 10-\mathrm{H} 10 A \cdots \mathrm{Cl1} 143^{\circ}$; $\mathrm{N} 10-\mathrm{H} 10 A \cdots \mathrm{Cl} 32.49$, $\mathrm{N} 10 \cdots \mathrm{Cl} 33.148(4) \AA$ and $\mathrm{N} 10-\mathrm{H} 10 A \cdots \mathrm{Cl} 3{ }^{132^{\circ}}$] are typical of those observed for short cis-MCl $\mathrm{Cl}_{2} \cdots \mathrm{H}$ interactions (Lewis \& Orpen, 1998) and compare well with values observed for $\left[4,4^{\prime}-\mathrm{H}_{2}\right.$ bipy $]\left[M \mathrm{Cl}_{4}\right]$ ($M=\mathrm{Pd}$, Pt; Lewis \& Orpen, 1998) and [4,4 ${ }^{\prime}-\mathrm{H}_{2}$ bipy $]\left[\mathrm{Cu}_{2} X_{6}\right.$] [$X=\mathrm{Cl}$ (Bokowska-Strzyewska \& Tosik, 1979); $X=$ Br (Tosik et al., 1990)]. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ interaction of

Fig. 2. A packing diagram showing the ribbons running along a. Each dianion is surrounded by successive columns of bipyridinium cations and BF_{4}^{-}anions.
$1.91 \AA$ is also short, and this distance and the nearly linear $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ angle of 170° characterize it as a close $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ hydrogen-bonding interaction.

The bis(4-pyridinium)disulfide cation is twisted with a $\mathrm{C}-\mathrm{S}-\mathrm{S}-\mathrm{C}$ torsion angle of $-81.5(2)^{\circ}$, which is comparable to the value of 86.6° reported for the only structurally characterized example of the bis(4pyridyl)disulfide ligand, namely the bis(triiodide) salt of trans-[μ-bis(4-pyridyl)disulfide]bis[bis $\left\{o-\left(\mathrm{Me}_{2} \mathrm{As}\right)_{2-}\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4}\right\} \mathrm{ClRu}\right]^{2+}$ (Coe et al., 1997). This bent arrangement results in the $\mathrm{BF}_{4}^{-} /$bipyridinium $/\left[\mathrm{Cu}_{2} \mathrm{Cl}_{6}\right]^{2-} /$ bipyridinium $/ \mathrm{BF}_{4}^{-}$units undulating across the plane of the hydrogen-bonded ribbon (Fig. 2).

Experimental

Crystals of the title compound were prepared by layering a solution of $\mathrm{Cu}\left(\mathrm{BF}_{4}\right)_{2}(0.02 \mathrm{~g}, 0.06 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{ml})$ over a solution of bis(4-pyridyl) disulfide ($0.025 \mathrm{~g}, 0.20 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$. Red acicular crystals appeared over a period of several weeks. IR spectroscopy confirmed the presence of BF_{4}^{--}anions.

Crystal data

$\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)_{2}\left[\mathrm{Cu}_{2} \mathrm{Cl}_{6}\right]$ -
$\left(\mathrm{BF}_{4}\right)_{2}$
$M_{r}=958.04$
Triclinic
$P \overline{1}$
$a=5.9096$ (11) \AA
$b=9.9845(17) \AA$
$c=14.394(3) \AA$
$\alpha=95.053(17)^{\circ}$
$\beta=93.762(19)^{\circ}$
$\gamma=99.544(17)^{\circ}$
$V=831.5(3) \AA^{3}$
$Z=1$
$D_{x}=1.913 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Stoe Stadi-4 four-circle diffractometer
$\omega / 2 \theta$ scans
Absorption correction: numerical (XRED; Stoe \& Cie, 1997a)
$T_{\text {min }}=0.906, T_{\text {max }}=0.945$
3244 measured reflections
2911 independent reflections

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 40 reflections
$\theta=20-35^{\circ}$
$\mu=2.081 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Needle
$0.70 \times 0.10 \times 0.06 \mathrm{~mm}$
Dark red

> 2335 reflections with
> $I>2 \sigma(I)$
> $R_{\text {int }}=0.067$
> $\theta_{\max }=25.03^{\circ}$
> $h=-7 \rightarrow 7$
> $k=-11 \rightarrow 11$
> $l=-13 \rightarrow 17$
> 3 standard reflections \quad frequency: 60 min intensity variation: $\pm 4.2 \%$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.082$
$S=1.18$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.55 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.43 \mathrm{e}^{-3}$
Extinction correction: none

2911 reflections

Scattering factors from
International Tables for
Crystallography (Vol. C)

H atoms constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+2.647 P\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
Table 1. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Cul}-\mathrm{Cll}$	2.2510 (1.3)	$\mathrm{Cu}-\mathrm{Cl} 3$	2.2609 (14)
$\mathrm{Cul}-\mathrm{Cl} 2$	2.3433 (14)	$\mathrm{CuI}-\mathrm{Cl}^{\text {in }}$	2.6643 (14)
$\mathrm{CuI}-\mathrm{Cl}^{2}$	2.2820 (14)		
$\mathrm{Cl1}-\mathrm{CuI}-\mathrm{Cl}_{2}$	92.67 (5)	$\mathrm{Cl} 2-\mathrm{CuI}-\mathrm{Cl} 3$	88.15 (5)
$\mathrm{Cl1}-\mathrm{CuI}-\mathrm{Cl} 2$	160.92 (5)	$\mathrm{Cl} 2^{1}-\mathrm{CuI}-\mathrm{Cl}^{\prime \prime}$	92.46 (5)
$\mathrm{Cll}-\mathrm{Cul}-\mathrm{Cl} 3$	92.88 (5)	$\mathrm{Cl} 2-\mathrm{CuI}-\mathrm{Cl}^{11}$	95.82 (5)
$\mathrm{ClI}-\mathrm{CuI}-\mathrm{Cl}_{3}{ }^{1}$	103.13 (5)	$\mathrm{Cl} 3-\mathrm{CuI}-\mathrm{Cl}^{\prime \prime}$	93.27 (5)
$\mathrm{Cl}_{2}-\mathrm{Cu}-\mathrm{Cl} 2$	84.27 (5)	$\mathrm{CuI}-\mathrm{Cl} 2-\mathrm{Cul}$	95.73 (5)
$\mathrm{Cl} 2-\mathrm{Cul}-\mathrm{Cl}_{3}$	170.92 (5)	$\mathrm{CuI}-\mathrm{Cl}_{3}-\mathrm{CuI}^{\prime \prime}$	86.73 (5)
C4-S1-S2-C7	-81.5 (2)		

Table 2. Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
NIO-H10A $\cdots \mathrm{Cl1}$	0.88	2.49	$3.237(4)$	143
$\mathrm{~N} 10-\mathrm{HIOA} \cdots \mathrm{Cl} 3$	0.88	2.49	$3.148(4)$	132
$\mathrm{NI}-\mathrm{HIA} \cdots \mathrm{FI}$	0.88	1.91	$2.781(6)$	170

The crystal was cooled using an Oxford Cryosystems openflow cryostat operating at 150 K (Cosier \& Glazer, 1986). H1A and H10A were found from ΔF syntheses and subsequently restrained to lie at a distance of $0.88 \AA$ from their parent N atoms, N1 and N10, respectively. All other H atoms were included at geometrically calculated positions; each was constrained to ride at a distance of $0.95 \AA$ from its parent C atom. For all H atoms, displacement parameters were constrained such that $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: STADI4 (Stoe \& Cie, 1997b). Cell refinement: STADI4. Data reduction: XRED (Stoe \& Cie, 1997a). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: SHELXTLJPC (Sheldrick, 1994). Software used to prepare material for publication: SHELXL97.

We thank EPSRC for provision of a four-circle diffractometer and for a postdoctoral fellowship (to PAC), and the University of Nottingham for a studentship (JEBN).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1036). Services for accessing these data are described at the back of the journal.

References

Battaglia, L. P., Corradi, A. B., Geiser, U., Willett, R. D., Motori, A., Sandrolini, F., Antolini, L., Manfredi, T.. Menabue, L. \& Pellacini, G. C. (1988). J. Chem. Soc. Dalton Trans. pp. 265-271.

Bokowska-Strzyewska, M. \& Tosik, A. (1979). Pol. J. Chem. 53. 2423-2428.
Coe, B. J., Hayat, S., Beddoes, R. L., Helliwell, M., Jeffery, J. C., Batten, S. R. \& White, P. S. (1997). J. Chem. Soc. Dalton Trans. pp. 591-599.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
Lewis, G. R. \& Orpen, A. G. (1998). Chem. Commun. pp. 1873-1874.
Sheldrick, G. M. (1990). Acta Crist. A46, 467-473.

Sheldrick, G. M. (1994). SHELXTL/PC. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crustal Structures. University of Göttingen, Germany.
Stoe \& Cie (1997a). XRED. Data Reduction Program. Version 1.09. Stoe \& Cie, Darmstadt. Germany.
Stoe \& Cie (1997b). STADI4. Diffractometer Control Program. Version 1.07. Stoe \& Cie, Darmstadt, Germany.
Tosik, A., Bokowska-Strzyewska, M. \& Mrozinski, J. (1990). J. Coord. Chem. 21. 253-261.

Acta Cryst. (1999). C55, 1425-1427

(1,4-Dioxane- O) $\left\{\mathbf{3 , 3} \mathbf{3}^{\prime}, 5,5^{\prime}\right.$-tetrachloro-2,2'-[4-methyl-4-azaheptane-1,7-diyl-bis(nitrilomethylidyne- N)]diphenolato$\left.\boldsymbol{O}, \boldsymbol{O}^{\prime}\right\}$ nickel(II), $\left[\mathrm{Ni}\left(3,5-\mathrm{Cl}_{4}\right.\right.$ salMetrien $\left.)\right]$

Ligia Gomes, Dora Pinho, Cristina Freire and Baltazar de Castro
CEQUP/Faculdade de Ciências do Porto and ISCSN, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal. E-mail: bcastro@fc.up.pt

(Received 18 December 1998; accepted 26 March 1999)

Abstract

In the title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{Cl}_{4} \mathrm{~N}_{3} \mathrm{O}_{2}\right)\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right)\right]$, the Ni atom has a distorted octahedral coordination geometry in which the pentadentate Schiff base ligand acts as an $\mathrm{N}_{3} \mathrm{O}_{2}$ donor and a molecule of 1,4-dioxane occupies the remaining coordination position. The N atoms adopt a meridional arrangement, coplanar with the O -donor atom of the dioxane molecule, and the ligand O atoms are trans-related. This conformation results in an approximate square-pyramidal coordination for the pentadentate ligand, with the dioxane molecule trans to the amine N atom.

Comment

We are currently interested in the redox properties of nickel(II) complexes with mixed-donor polydentate Schiff base ligands (Freire \& de Castro, 1998; Azevedo et al., 1994; Carrondo et al., 1993; de Castro \& Freire, 1990) due to their potential use as synthetic catalysts and as models for metalloenzymes. We reported previously that nickel(II) complexes with $\mathrm{N}_{2} \mathrm{O}_{2}$-tetradentate Schiff base ligands derived from salicylaldehyde and diamines are oxidized to nickel(III) only in the presence of strong donating solvents (Freire \& de Castro, 1998; VilasBoas et al., 1997; Azevedo et al., 1994; Carrondo et al., 1993; de Castro \& Freire, 1990). In order to
overcome the strong solvent effect on the oxidative properties of the latter complexes, we have prepared a group of pentadentate Schiff base ligands using the same aldehyde derivatives but condensed with triamines, and have studied the feasibility of their nickel(II) complexes being oxidized to nickel(III). Due to the variability of coordination modes of these pentadentate ligands (Freyberg et al., 1979; Healey et al., 1975), we found it necessary to determine the structure of the title complex, $\left[\mathrm{Ni}\left(3,5-\mathrm{Cl}_{4}\right.\right.$ salMetrien $\left.)\right]$, to ascertain the coordination mode of the Schiff base ligand.

[$\mathrm{Ni}\left(3,5-\mathrm{Cl}_{4}\right.$ salMerrien $\left.)\right]$

The structure consists of discrete molecules in which the Ni atom has a distorted octahedral coordination geometry, with the pentadentate ligand acting as an $\mathrm{N}_{3} \mathrm{O}_{2}$ donor and a molecule of 1,4-dioxane occupying the remaining coordination site (Fig. 1). The N atoms adopt a mer arrangement, coplanar with the O-donor atom of the dioxane molecule, and consequently the Schiff base ligand O atoms are trans-related. In the observed conformation, the pentadentate ligand coordination is approximately square pyramidal, leaving the other axial position trans to the amine N atom free to bind a dioxane molecule. The equatorial bond distances are similar, but the $\mathrm{Ni}-\mathrm{N}$ (amine) axial bond distance is much longer than any of the equatorial ones. All bond distances are longer than those observed in the homologous complexes with the Schiff base ligand derived from the non-substituted aldehyde, which exhibit a distorted trigonal-bipyramidal structure (Di Vaira et al., 1971). The longest bond is that of $\mathrm{Ni}-\mathrm{O}$ (dioxane), as expected for a weakly coordinated monodentate ligand. The angular distortion from normal octahedral geometry is in the range $3-11^{\circ}$, and the maximum deviation of the Ni atom from the least-squares equatorial plane of coordination ($\mathrm{N} 1 \mathrm{~A} / \mathrm{O} 1 \mathrm{~A} / \mathrm{N} 1 / \mathrm{O} 1$) is $0.093(1) \mathrm{A}$. However, the ligand chelate-ring atoms ($\mathrm{N} 1 A / \mathrm{C} 7 A / \mathrm{C} 6 A / \mathrm{Cl} A / \mathrm{O} 1 A$ and $\mathrm{N} 1 / \mathrm{C} 7 / \mathrm{C} 6 / \mathrm{C} 1 / \mathrm{O} 1$) define planes that make angles of $34.2(1)$ and $31.6(1)^{\circ}$, respectively, with the plane of coordination, and each is almost coplanar with the plane defined by the atoms of the corresponding benzene ring; the angle between the two salicyl moieties is $71.2(1)^{\circ}$. The umbrella shape of the molecule may be a consequence of steric constraints imposed by the long flexible $-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{N}\left(\mathrm{CH}_{3}\right)-\left(\mathrm{CH}_{2}\right)_{3}$ - imine bridge, which exhibits disorder in some of the C atoms; this dis-

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA 1072). Services for accessing these data are described at the back of the journal.

